
International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 679
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

FPGA Based Data Compression using Dictionary

based LZW Algorithm
Mr. Samish Kamble, Prof. S B Patil,

 PG Student, E & TC Department, D.Y. Patil College of Engineering, Kolhapur, India
 Asso.Professor, E & TC Department, D.Y. Patil College of Engineering, Kolhapur, India

 Email:-samish707@gmail.com,s_b_patil2000@rediffmail.com

Abstract: Field Programmable Gate Array (FPGA) technology has become a viable target for the implementation of algorithms in
different compression methods applications. In a distributed environment, large data files remain a major bottleneck. Compression
is an important component of the solutions available for creating file sizes of manageable and transmittable dimensions. When
high-speed media or channels are used, high-speed data compression is desired. Software implementations are often not fast
enough. In this paper, we present the very high speed hardware description language (VHDL) modelling environment of Lempel-
Ziv-Welch (LZW) algorithm for binary data compression to ease the description, verification, simulation and hardware realization.
The LZW algorithm for binary data compression comprises of two modules compressor and decompressor. The input of
compressor is 1-bit bit stream read in according to the clock cycle. The output is an 8-bit integer stream fed into the decompressor,
which is an index that represents the memory location of the bit string stored in the dictionary. In this paper, data compression
technique is described using Lempel-Ziv-Welch algorithm.

Keywords: Binary Data Compression, LZW, Lossless data compression, VHDL Simulation.

—————————— ——————————

 I. INTRODUCTION
Compression is the art of representing information in a compact
form rather than its original or uncompressed form [1]. The
main objective of data compression is to find out the
redundancy and eliminate them through different efficient
methodology; so that the reduced data can save, space: to store
the data, time: to transmit the data
and cost: to maintain the data. To eliminate the
redundancy, the original file is represented with some coded
notation and this coded file is known as „encrypted file‟. For
any efficient compression algorithm this file size must be less
than the original file. To get back the original file we need to
„decrypt‟ the encoded file. Data compression has an
undeserved reputation for being difficult to master, hard to
implement, and tough to maintain. In fact, the techniques used
in the previously
mentioned programs are relatively simple, and can be
implemented with standard utilities taking only a few lines of
code. This article discusses a good all-purpose data
compression technique: Lempel-Ziv-Welch, or LZW
compression. The original Lempel Ziv approach to data
compression was first published in 1977, followed by an
alternate approach in 1978. Terry Welch's refinements to
the 1978 algorithm were published in 1984. The algorithm is
surprisingly simple. In a nutshell, LZW compression replaces
strings of characters with single codes. It does not do any
analysis of the incoming text. Instead, it just adds every new
string of characters it sees to a table of strings. Compression
occurs when a single code is output
instead of a string of characters.
Highly redundant database files can be compressed down to
10% of their original size. Once the tools are available, the
applications for compression will show up on a regular based
LZW The code that the LZW algorithm outputs can be of any
arbitrary length, but it must have more bits in it than a
single character. The first 256 codes (when using eight bit
characters) are by default assigned to the standard character set.

The remaining codes are assigned to strings as the algorithm
proceeds. The sample program runs as shown with 12 bit codes.
This means codes 0-255 refer to individual bytes, while codes
256-4095 refer to substrings.

 II. LITERTAURE SURVEY
Compression is of two type Lossless compression and Lossy
compression
A. Types of compression methods
Compression is of two type Lossless compression and Lossy
compression. These two types of compression technique is
explain below
1) Lossless Compression
In the process compression if no data is lost and the exact
replica of the original file can be retrieved by decrypting the
encrypted file then the compression is of lossless compression
type. Text compression is generally of lossless type. In this type
of compression generally the input file is encrypted first which
is used for storing or transmitting data, and then at the output
the file is decrypted to get the original file.

2) Lossy compression
Data compression is contrasted with lossless data
Compression. In this technique some data is loss at the output
which is acceptable. Generally, lossy data compression schemes
are guided by research on how people perceive the data in
question. For example, the human eye is more sensitive to
subtle variations in luminance than it is to variations in colour.

There is a corresponding trade-off between information lost and
the size reduction
B. Lossless Compression methods
The lossless compression algorithm is divided into
following two coding techniques
1) Entropy Based Encoding

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 680
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

In this compression process the algorithm first counts the
frequency of occurrence of each unique symbol in the given
text. And then it is replaced by the unique symbol generated by
the algorithm. The frequency of the symbols varies with respect
to the length in the given input file.
a) Huffman coding
Is a technique which is entropy based and which reduces the
average code length of symbols in an alphabet such as a human
language alphabet or the data-coded alphabet ASCII. Huffman
coding has a prefix property which uniquely encodes symbols
to prevent false interpretations when deciphering the encoded
symbols, such that an encoded symbol cannot be a combination
of other encoded
symbols. The binary tree that is used to store the encoded
symbols is built bottom up, compared to the Shannon- Fanon
tree which is built top down [6, 44, 48, and 57]. When the
probability of each symbol appearing in the data stream has
been determined, they are sorted in order of
probability. The two symbols with the lowest probability are
then grouped together to form a branch in the binary tree. The
branch node is then assigned the combined probability value of
the pair. This is iterated with the two nodes with the lowest
probability until all nodes are connected and form the binary
tree. After the tree has been completed each edge is either
assigned the value one or
zero depending on if it is the right or left edge. It does not
matter if the left edge is assigned one or zero as long as it is
consistent for all nodes. The code for each symbol is then
assigned by tracing the route, starting from the root of the tree
to the leaf node representing the symbol. In this way we have
explain the Huffman coding technique in which coding is done
with respect to probability of Occurrence of the character.
b) Shannon fanon encoding
It works in the same way as Huffman coding except that the
tree is built top down. When the probability of each symbol has
been determined and sorted the symbols are split in two subsets
which each form a child node to the root. The combined
probability of the two subsets should
be as equal as possible. This is iterated until each subset only
contains one symbol. The code is created in the same way as
with Huffman codes. Due to the way the Shannon- Fanon tree is
built it does not always produce the optimal result when
considering the average code length
c) Arithmetic Coding
IBM is the one who has developed the arithmetic coding
technique and then it uses this compression technique for their
mainframes. Arithmetic coding is the best entropy coding
method where high compression ratio is needed. Arithmetic
encoding technique gives better results than Huffman encoding.
But the disadvantage is that it is complicated then other
compression technique. In this the input data is a single rational
number between 0and 1 rather then splitting the probabilities of
symbols into a tree. Then, it is further transformed into a fixed-
point binary number which is the encoded result. The value can

be decoded into the original output by changing the base from
binary back to the original base and replacing the values with
the symbols they correspond to.
A design flow for arithmetic coding is as follows:
1. Calculate the number of unique symbols in the input. This
number represents the base b (e.g. base 2 is binary) of the
arithmetic code.

2. Assign values from 0 to b to each unique symbol in the order
they appear.
3. Take the value from the upper step and assign their code to it.
4. Convert the result from step 3 from base b to a
sufficiently long fixed-point binary number to
preserve precision.
5. Record the length of the input string somewhere in the result
as it is needed for decoding
C. The Dictionary based technique is given below
Substitution encoding is another name for dictionary based
encoding process. A data structure known as Dictionary is
maintained throughout the process [3]. This data structure
consists of no of string. The encoder matches the substrings
chosen from the original text and finds it in the dictionary; if a
successful match is found then the substring is replaced by a
reference to the dictionary in the
encoded file .Lempel-Ziv string encoding creates a
dictionary of encountered strings in a data stream. At first the
dictionary only contains each symbol in the ASCII alphabet
where the code is the actual ASCII-code. Whenever a new
string appears in the data stream, the string is added to the
dictionary and given a code. When the same word is
encountered again the word is replaced with the code in the
outgoing data stream. If a compound word is encountered the
longest matching dictionary entry is used and over time the
dictionary builds up strings and their respective codes. In some
of the Lempel Ziv algorithms both the compressor and
decompressor needs construct a dictionary using the exact same
rules to ensure
that the two dictionaries match.
1) Suitable LZ algorithms
In this section some suitable algorithms for our
implementation will be described. These are the
algorithms that were most often used in the studies we
analyzed. Figure 1 shows how some of the algorithms described
in this section are related to each other and when they were
developed.
a) LZ77
LZ77 is the dictionary-based algorithm developed by Lempel
and J. Ziv in 1977 [3]. This algorithm uses dictionary based on
a sliding window of the previously encode characters. The
output of the algorithm is a sequence of triples containing a
length l; an o set o and the next symbol c after the match. If the
algorithm cannot match, l and o will both be set to 0 and c will
be the next symbol in the stream. Depending on the size of l and
o, the
compression ratio and memory usage will be affected. If is
small, the number of characters will be small, reducing the size
of the sliding window and in turn the memory usage.
b) LZ78
The LZ78 algorithm was presented by A. Lempel and J. Ziv in
1978 [8]. Like LZ77, it is a dictionary but with LZ78 the
dictionary may contain strings from anywhere in the data. The
output is a sequence of pairs containing an index i and the next

non-matching symbol c. The memory usage of LZ78 might be
more unpredictable than that of LZ77, since the size of the
dictionary has no upper limit in LZ78, though there are ways to
limit it. A benefit of LZ78 compared to LZ77 is the
compression speed. The below fig gives the following no of

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 681
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

LZ77 based algorithm.

 Figure. 1. The Lempel Ziv LZ77 algorithm family

i) LZR
The LZR is an algorithm based on LZ77 and its
modification allows pointers to reference anything that has
already been encoded without being limited by the length of the
search buffer (window size exceeds size of expected input).
ii) LZSS
LZSS is an algorithm based on LZ77 that was developed by J.
Storer and T. Szymanski in 1982. Like LZ77, LZSS also uses a
dictionary based on a sliding window. When using LZSS, the
encoded consists of a sequence of characters and pointers. Each
pointer consists of an o set and a length l. The position of the
string is determined by o and l determines the length of the
string.

iii) LZB
LZB compression technique uses lengths which vary with the
size of the given file.
iv) LZH
The LZH implementation employs Huffman coding to
compress the pointers.
The below diagram gives detail explanation of different
algorithm based on LZ78 compression technique

 Figure. 2. The LZ78 algorithm family

i) LZT
This is another algorithm for data compression little bit
different form the LZW and slightly similar to LZC the only
variation is that it provides place for new phrases that can be
added to the dictionary.

ii) LZMS
LZMS creates new dictionary entries not by appending the first
non-matching character, but by concatenating the last two. The

LZR is an algorithm based on LZ77 and its modification allows
pointers to reference anything that has
already been encoded without being limited by the length of the
search buffer (window for hardware solution is not constant.
iii) LZJ
The dictionary used by LZJ contains a no of unique strings
which is coded by fixed length. Once the dictionary is full, all
strings that have only been used once are removed. This is
continued until the dictionary becomes static.
iv) LZFG
LZFG uses the dictionary building technique from the original
LZ78 algorithm, but stores the elements in a tie data structure.
v) LZC
LZC was developed from LZW and is used in the UNIX utility
compress. Its code begins at 9 bits, and doubles the size of the
dictionary when all 9-bit codes have been used by increasing
the code size to 10 bits. This is repeated until all 16-bit codes
have been used at which point the dictionary becomes static .If
a decrease in compression ratio is detected, the dictionary is
discarded. In the study
by K. Barr, they found that compress was relatively
balanced compared to the other algorithms, not being the best
or worst in any of the categories. The data used for compress on
in this study was 1 MB of the Calgary corpus and 1MB of
common web data.
vi) LZW
This improved version of the original LZ78 algorithm is
perhaps the most famous modification and is sometimes even
mistakenly referred to as Lempel Ziv algorithm. The LZ-
Algorithm in 1984 was published by Terry Welch . it basically
applies the LZSS principle of not explicitly transmitting the
next non matching symbol to the LZ78 algorithm. The only
remaining outputs of this improved algorithm are fixed-length
references to the dictionary (indexes). Of course, we can‟t just
remove all symbols from the output. Therefore the dictionary
has to be initialized with all the symbols of the input alphabet
and this initial dictionary needs to be made known to the
decoder.
 III PROPOSED LZW METHOD
In this paper, data compression is described using
Lempel Ziv Welch based technique called as LZW. Data
compression is basically a process in which the data is provided
in compact form rather then original form or uncompressed
form combines [1]. This chapter discussed the LZW algorithm.
Lempel-Ziv-Welch proposed a variant of LZ78 algorithms; in
which compressor always give a
code as an output instead of a character. To do this, a major
change in LZW is to preload the dictionary with all possible
symbols that can occur. LZW compression replaces string of
characters with codes. LZW is a dictionary based lossless data
compression algorithm and its detail implementation is shown.
There are many algorithms which have been used for data
compression like Huffman and Lempel-Ziv-Welch (LZW),
arithmetic coding. LZW algorithm is the most popular
algorithm. LZW algorithm is just like a greedy approach and
divides text into substrings. Like the LZW algorithm proposed
in [2]. LZW algorithm has both compression and
decompression techniques which is explained as below.

A. LZW algorithm for compression

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 682
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

LZW algorithm is a lossless dictionary based algorithm. In
which an index number is provided for each symbol, character,
and special characters. Firstly the input text file which we has to
compressed is read from the stored file .The stored file is stored
as "message.text" and every time we want to read the input we
have to call this file. Then a new dictionary is formed and
stored which consist of each characters and symbols from the
keyboard starting from 0-255.Intially the data is enter in the
storage place to see where it is present in the dictionary or not
and if yes then to generate its code. And if the same character is
not found in the dictionary it will add it as a new character and
then assign to it a code. And if the character if already present
in the dictionary its index number is provide by the dictionary.
This technique is generally used for text compression as at the
end of process no data is lost. The compression algorithm
consists of two variables which are CHAR and STRING. The
variable CHAR is generally used to define a single character
having single byte from 0-255 while the variable STRING is
used to define a group of more then one character. The
algorithm starts as flows .Firstly we have to take the first byte
from the input text file and stored it in the variable string as
shown in the below given example where the first character is
"A". This same procedure is followed every time when a new
character appears. Each time new character appears is stored in
the variable CHAR. Then it is seen that whether the
combination of STRING+CHAR is present in the dictionary or
not. If it is present then it is given index number and if it is not
present then it is added in the dictionary in variable STRING.
And the dictionary obtains a new CHAR but with a single byte.
Example of this combination is as below in the example it will
take "AB" AS A STRING+CHAR and then stored in a
dictionary as a new variable and it will then get a index number
or code as "AB=256".Then from the given below table its is
seen that the 6th character is "C". so know the new obtain
variable is "ACC" which then added to the dictionary having
index code as 261.And in this way the longest sequence is
consider. This flow of algorithm is continued until all the
characters in the input file are added in the dictionary. The
decompressor algorithm consists of four variables which are
NCODE, OCODE, and STRING AND CHAR.
In decompression algorithm the first byte of the compressed
text file is first placed in the OCODE. Then combination is
consider of two variable if the combination is found in the
dictionary then it is stored as STRING=OCODE and if the
match is not found then STRING =NCODE.

 VI. RESULTS & DISCUSSIONS
LZW algorithm is simulated in XILINX 9.2 and an input text is
used as shown below .Firstly a dictionary is initialised in which
all the symbols and characters present on our keyboard is stored
first and then the characters from the input file is compared
with the characters stored in the dictionary this is repeated for
each character .Thena string is taken which is again compare
with the existing dictionary and if the string is not present it is
added and new word are formed. The given input text message
is as shown below.
After the input text is read .A new dictionary is formed,
first by storing every symbol and character from the keyboard
from 0-255 .The input string given to the fpga kit is as follows.
it is 10 charcters and if we consider 8 bits/charcter total 80 bits
are required to store the string.
"ababefabab ";

The given input text message is as shown above.

After the input text is read .A new dictionary is formed, first by
storing every symbol and character from the keyboard from 0-
255.
After compression the string requires 34 bit to stores the same
string. the stimulation results are shown below.

 Figure 3

The table below shows the compression of different strings that
have been provided with lzw algorithm in our work

SR
NO

INPUT STRING LAST
CODE

ORIG
LENGTH

COMP
LENGTH

ORG LEN
OF 5 BITS

ORG LEN
OF 8 BITs

1 “abcdefabij” 34 49 43 14% 46.25%

2 “ababefabab” 33 49 37 26% 53.75%

3 “abcdefghij” 35 49 49 2% 38%

4 “ababefabad” 33 49 37 26% 53.75%

5 “abcabcabca” 32 49 31 38% 61.25%

6 “abcabcabcb” 32 49 31 38% 61.25%

7 “efefcdefef” 33 49 37 26% 53.75%

8 “pqrstuvpqr” 33 49 37 26% 53.75%

9 “xyzxxxxsav” 34 49 43 14% 46.25%

10 “abdefcghab” 35 49 49 2% 38%

 Table 1

 V. CONCLUSIONS
 Comparison of a number of different dictionary based lossless
compression algorithms for text data is given. Several existing
lossless compression methods are compared for their
effectiveness. Although they are tested on bases of compression
speed because lossless algorithm have better compression
speed. By considering the compression ratio, the LZW
algorithm may be considered as the most efficient algorithm
among the selected ones. Those values of this algorithm are in
an acceptable range and it shows better results. And we get the
exactly same output text which was provide as an input without
any loss this an advantage of LZW algorithm that after
compression still the original file is obtained

 REFERENCES

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 683
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

[1] Pu, I.M., Elsevier, Britain, “Fundamental Data
Compression”, 2006.
[2] Blelloch E. “Introduction to Data Compression”, Computer
Science Department, Carnegie Mellon University.2002.
[3] Kesheng, W., J. Otoo and S. Arie, “Optimizing bitmap
indices with efficient compression”, ACM Trans Database
Systems, 2006, pg no 31: 1-38.
[4] Kaufman, K. and T. Shmuel, “Semi-lossless text
compression”, Intl. J. Foundations of Computer
Science,2005,pg no1167-1178.
[5] Vo Ngoc and M. Alistair, “Improved word aligned binary
compression for text indexing”, IEEE Trans. Knowledge &
Data Engineering,2006, pg no 857-861.
[6] Cormak, V. and S. Horspool,“Data compression using
dynamic Markov modeling,” Comput. J,1987, pg no 541–550.
[7] Capocelli, M., R. Giancarlo and J. Taneja, “Bounds on the
redundancy of Huffman codes”, IEEE Trans. Inf. Theory,1986
[8] Gawthrop, J. and W. Liuping “Data compression for
estimation of the physical parameters of stable and unstable
linear systems”, Automatica,2005, pg no1313-1321.
[9] Bell,T.C.,Clearly, J. G., AND Witten, I. H. Text
Compression. Prentice Hall, Upper Sadle River, NJ

IJSER

http://www.ijser.org/

